The Canonical Model Space for Law - invariant Convex Risk Measures is L 1 ∗

نویسندگان

  • Damir Filipović
  • Gregor Svindland
چکیده

In this paper we establish a one-to-one correspondence between lawinvariant convex risk measures on L∞ and L. This proves that the canonical model space for the predominant class of law-invariant convex risk measures is L.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Risk Measures Beyond Bounded Risks, or The Canonical Model Space for Law-Invariant Convex Risk Measures is L^1

In this paper we provide a rigorous toolkit for extending convex risk measures from L∞ to L, for p ≥ 1. Our main result is a one-to-one correspondence between law-invariant convex risk measures on L∞ and L. This proves that the canonical model space for the predominant class of law-invariant convex risk measures is L. Some significant counterexamples illustrate the many pitfalls with convex ris...

متن کامل

The Canonical Model Space for Law-invariant

In this paper we establish a one-to-one correspondence between lawinvariant convex risk measures on L∞ and L. This proves that the canonical model space for the predominant class of law-invariant convex risk measures is L.

متن کامل

Convex Risk Measures Beyond Bounded Risks

This work addresses three main issues: Firstly, we study the interplay of risk measures on L∞ and Lp, for p ≥ 1. Our main result is a one-to-one correspondence between law-invariant closed convex risk measures on L∞ and L1. This proves that the canonical model space for the predominant class of law-invariant convex risk measures is L1. Secondly, we provide the solution to the existence and char...

متن کامل

Optimal capital and risk allocations for law- and cash-invariant convex functions

In this paper we provide the complete solution to the existence and characterisation problem of optimal capital and risk allocations for not necessarily monotone, law-invariant convex risk measures on the model space L, for any p ∈ [1,∞]. Our main result says that the capital and risk allocation problem always admits a solution via contracts whose payoffs are defined as increasing Lipschitz con...

متن کامل

Subgradients of Law-Invariant Convex Risk Measures on L

We introduce a generalised subgradient for law-invariant closed convex risk measures on L and establish its relationship with optimal risk allocations and equilibria. Our main result gives sufficient conditions ensuring a non-empty generalised subgradient.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010